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ABSTRACT 
The manuscript should not exeed 4000 words. Nature inspired, bacterial foraging optimization algorithm 

(BFOA), and bio inspired, differential evolution (DE), have been employed to solve complex search 

optimization problems. Researchers have been investigating the performance of different DE parameters 

(crossover rate and mutation factor) in solving optimization problems. In the present paper, the performance 

of a hybrid technique called Chemotaxis Differential Evolution Optimization Algorithm (CDEOA) which 

hybridizes BFOA with DE using different crossovers and mutation rates is reported along with the impact 

their combinations have on CDEOA in terms of exploration and exploitation of the population. In the present 

investigation, 6 unimodal and multimodal benchmark functions were involved.  
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1. INTRODUCTION 

Differential Evolution (DE) and its variants with adapted parameters have been employed to solve the real-

world optimization problems. Recent studies (Zaharie 2002; Jingqiao and Sanderson, 2009; Qin et al., 2009) 

have fostered the fine-tuning the parameters of DE. So far, Bacterial Foraging Optimization Algorithm 

(BFOA )has been successfully applied in the area of optimal control design (Passino, 2002), harmonic 

estimation (Mishra, 2005), transmission loss reduction (Tripathy et al, 2006).  

The CDEOA’s (hybrid technique of BFOA) behavior on different DE parameter pairs such as mutation 

and crossover rate has been reported (Yıldız and Altun, 2015). BFOA mimics the chemotaxis behaviors of a 

bacterium, whereas DE employs the evolutionary operators, i.e. mutation, crossover, and selection. CDEOA 

hybridizes the aforementioned techniques in such a way that if a bacterium fails to explore the food, the 

behavior of the algorithm turns out to be explorative and, if it discover the nutrient-rich areas, the algorithm 

acts as an exploitative fashion.  
 

Bacterial foraging optimization algorithm (BFOA) 

The mechanism of Passino (2002) consisting of chemotaxis, reproduction, and elimination-dispersal is here 

introduced briefly. Figure 1 depicts a flowchart of BFOA adapted from (Dasgupta, 2009). A pseudo code of 

BFOA is embedded in the Algorithm 1.  
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Fig. 1: A flowchart of BFOA. 

Chemotaxis 

An E.coli bacterium makes tumble and run steps in succession via flagella in its lifetime. The tumble is the 

random direction of a swim, whereas swim is the successive step in the same direction. 𝜃(𝑖, 𝑗, 𝑘, 𝑙)represents 

the position of the 𝑖th bacterium at 𝑗th chemotactic, 𝑘th reproductive, and 𝑙th elimination-dispersal step. Eq. 

1 and 2 refer to the position of a bacterium in the following steps: 

 

𝑡(𝑗) =
∆(𝑖)

√∆𝑇(𝑖)∗∆(𝑖)
         (1) 

𝜃(𝑖, 𝑗 + 1, 𝑘, 𝑙) = 𝜃(𝑖, 𝑗, 𝑘, 𝑙) + 𝐶(𝑖) ∗ 𝑡(𝑗)      (2) 

where 𝐶(𝑖) is a constant,𝑡(𝑗), Eq. 1 refers to the direction of the 𝑗th step, and ∆(𝑖) is a random vector whose 

elements vary from [-1, 1].  

 

Reproduction 

The cost function values, health of a bacterium are accumulated in the life-time of a bacterium. Based on 

each bacterium’s health, the bacteria in the swarm were classified from the lowest (the healthiest ones) to 

highest cost. The population members, which have lowest health, were split into two bacteria and placed at 

the same positions while the other bacteria were not considered. 
 

Chemotaxis differential evolution optimization algorithm (CDEOA) 
CDEOA is a hybrid population-based nature inspired optimization technique whose driving forces rely on 

the operators of chemotaxis, reproduction, mutation, crossover, and selection. It employs the local search 

operator (chemotaxis) from BFOA and global search operators (mutation and crossover) from DE. CDEOA 

works on the “weak” bacteria to make the algorithm explorative where “weak” bacteria are the individuals in 

positions with nutrients-poor medium and “strong” bacteria to make the algorithm exploitative where 

“strong” bacteria are the individuals in positions with nutrients-rich medium (Yıldız and Altun 2015). 
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Algorithm 1 Detailed pseudo-code of CDEOA 

If the bacterium explores a nutrient-rich medium and carries on running for a predetermined 𝑀𝑟 number 

of consecutive generations, this bacterium will enter exploitation state which is the use of the mutation, 

crossover, and selection operators of DE (line 60 in Algorithm 1). If the bacterium’s current cost remains 

fixed for a predefined number 𝑀𝑡 of consecutive generations, then this bacterium will enter exploration state 

which is its liquidation (line 48 in Algorithm 1). Yıldız and Altun (2015) reported that the balance between 

exploration and exploitation of search space is established due to these two strategies. The pseudocode of 

CDEOA is presented in Algorithm 1. 

Experimental study 

The performance of CDEOA on different mutation and crossover rate pairs were tested using a set of 6 

standard benchmark functions. Functions 1 and 2 are unimodal and functions from 3 to 6 are multimodal 

functions. Table 1 describes the benchmark functions used in the experiments. CDEOA/rand/1 implies the 

algorithm which employs DE/rand/1 mutation strategy (Eq. 3) whereas CDEOA/best/1 implies DE/best/1 

(Eq. 4). 

Tab. 1 Description of benchmark functions used. D: dimensionality of the functions 

No Name Formula 
Search 
space 

𝑓1 Sphere 𝑓1(𝑥) =∑𝑥𝑖
2

𝐷

𝑖=1

 (-2,2) 

𝑓2 Schwefel 2.21 𝑓2(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 < 𝑖 < 𝐷} (-2,2) 

𝑓3 Rosenbrock 𝑓3(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 2)2]

𝐷−1

𝑖=1

 (-2,2) 
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Comparison of five mutation and crossover rate paired techniques based on DE/rand/1 mutation 

strategy 

DE/rand/1 (Eq. 3), one of the most used mutation strategy, is characterized by a slow convergence speed. In 

addition, it exhibits much stronger exploration ability as three individuals acting in distinct search space 

information out of the current population are randomly chosen. Here, the aforementioned mutation strategy 

empowers the exploitation ability. In contrast, it slows down the exploitation ability of an individual (Qin, et 

al., 2009). 

• Sphere 9.27E-09 9.02E-09 1.77E-06 3.31E-03 9.09E-09 

• Schwefel 2.21 1.59E-02 1.03E-02 4.29E+00 2.53E+01 9.41E+00 

• Rosenbrock 2.57E+01 2.37E+01 2.15E+01 3.68E+01 2.23E+01 
 

1. Ackley 1.66E+00 1.66E+00 1.66E+00 1.67E+00 1.66E+00 
2. Rastrigin 1.69E+01 3.22E+00 1.75E+00 4.00E+01 3.30E+00 
3. Griewank 4.93E-04 8.89E-09 4.19E-08 6.54E-03 8.91E-09 

 

Unimodal functions 

In these two unimodal functions in Table 2, [0.5, 0.9] and [0.5, 0.5] exhibit superior performance to the other 

[𝐹,𝐶𝑅] pairs. Even though the 𝐶𝑅𝑠 are different in each pair, they end up with the similar results. We can 

infer that 𝐹 = 0.5 and 𝐶𝑅 which is within the range of [0.5, 0.9] yield better results in terms of quality of 

final solution. [0.1, 0.9] is unable to perform well in two unimodal problems because 𝐹 which is close to 0.0 

has tendency to lead less exploration ability in searching the search space.  

2. CONCLUSIONS 

CDEOA/best/1 exhibits better performance than CDEOA/rand/1 in sphere. CDEOA/rand/1 outperforms the 

CDEOA/best/1 in Shwefel 2.21 showing that the behavior of CDEOA depends on unimodal functions. In 

multimodal functions, CDEOA/best/1 is generally better than CDEOA/rand/1 in Rosenbrock with the 

exception of [0.1, 0.1] and [0.8, 0.2] pairs, so these exceptions have a great impact in the success of 

CDEOA/best/1. Regardless the different [𝐹, 𝐶𝑅] pairs, both CDEOA/rand/1 and CDEOA/best/1 possess 

identical results in Ackley. CDEOA/rand/1 exhibits in Rastrigin and Griewank better performance than 

CDEOA/best/1. We can infer that the results are problem specific. In particular¸ 𝐹 ∈ [0.1, 0.5] tends to yield 

better performance while 𝐶𝑅 is equal to 0.5. Generally speaking, there are no common parameter settings for 

all the problems. Rather, there is an optimum parameter values for each problem after fine-tuning 

experiments. The Python source code of the CDEOA can be found in 

(https://sites.google.com/site/yeyildiz12/).  
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