THE EFFECTS OF CROSSOVER AND
MUTATION RATES ON CHEMOTAXIS
DIFFERENTIAL EVOLUTION
OPTIMIZATION ALGORITHM

Add your Author(s) NAME
Affiliation

ABSTRACT

The manuscript should not exeed 4000 words. Nature inspired, bacterial foraging optimization algorithm
(BFOA), and bio inspired, differential evolution (DE), have been employed to solve complex search
optimization problems. Researchers have been investigating the performance of different DE parameters
(crossover rate and mutation factor) in solving optimization problems. In the present paper, the performance
of a hybrid technique called Chemotaxis Differential Evolution Optimization Algorithm (CDEOA) which
hybridizes BFOA with DE using different crossovers and mutation rates is reported along with the impact
their combinations have on CDEOA in terms of exploration and exploitation of the population. In the present
investigation, 6 unimodal and multimodal benchmark functions were involved.

Keywords: bacterial, foraging, optimization,

1. INTRODUCTION

Differential Evolution (DE) and its variants with adapted parameters have been employed to solve the real-
world optimization problems. Recent studies (Zaharie 2002; Jinggiao and Sanderson, 2009; Qin et al., 2009)
have fostered the fine-tuning the parameters of DE. So far, Bacterial Foraging Optimization Algorithm
(BFOA)has been successfully applied in the area of optimal control design (Passino, 2002), harmonic
estimation (Mishra, 2005), transmission loss reduction (Tripathy et al, 2006).

The CDEOA’s (hybrid technique of BFOA) behavior on different DE parameter pairs such as mutation
and crossover rate has been reported (Yildiz and Altun, 2015). BFOA mimics the chemotaxis behaviors of a
bacterium, whereas DE employs the evolutionary operators, i.e. mutation, crossover, and selection. CDEOA
hybridizes the aforementioned techniques in such a way that if a bacterium fails to explore the food, the
behavior of the algorithm turns out to be explorative and, if it discover the nutrient-rich areas, the algorithm
acts as an exploitative fashion.

Bacterial foraging optimization algorithm (BFOA)

The mechanism of Passino (2002) consisting of chemotaxis, reproduction, and elimination-dispersal is here
introduced briefly. Figure 1 depicts a flowchart of BFOA adapted from (Dasgupta, 2009). A pseudo code of
BFOA is embedded in the Algorithm 1.

Set bacterium index i =i+ 1

(E)Q—No—</w\ s 7/\/)
ot

Yes

’ Compute J(ijk.I) and set Jas: = J(ijk.)) |

!

i Tumble (generate a random vector A() l

Compute J(i.1+1.k1)

Increase Reproduction
loop counter k = k + 1

Perform Elimination-

<K <Ny? N dispersal with the
\/_ probability of Pes
Yes
A~
Increase Chemotaxis (x)
loop counter \ P . No
— < melNg? >
Perform Reproduction i /,/
(Discard the worse s N
half ofthe nd fNo—<j < Ne? > Yes
split the better half \‘T/ T
into two) e
/1\ e
© =N $<J\HJ/ S
Yes
L

Swim or Run(Let the bacterium take C(i)
step size along the direction of the tumble
vector A()

Fig. 1: A flowchart of BFOA.

Chemotaxis

An E.coli bacterium makes tumble and run steps in succession via flagella in its lifetime. The tumble is the
random direction of a swim, whereas swim is the successive step in the same direction. 8(i, j, k,) represents
the position of the ith bacterium at jth chemotactic, kth reproductive, and lth elimination-dispersal step. Eq.
1 and 2 refer to the position of a bacterium in the following steps:

2y A(D)
‘) = oo M
0G,j+1,k1) =06@,j k1) +C3G) ())

where C (i) is a constant,£(j), Eq. 1 refers to the direction of the jth step, and A(i) is a random vector whose
elements vary from [-1, 1].

Reproduction

The cost function values, health of a bacterium are accumulated in the life-time of a bacterium. Based on
each bacterium’s health, the bacteria in the swarm were classified from the lowest (the healthiest ones) to
highest cost. The population members, which have lowest health, were split into two bacteria and placed at
the same positions while the other bacteria were not considered.

Chemotaxis differential evolution optimization algorithm (CDEOA)

CDEOA is a hybrid population-based nature inspired optimization technique whose driving forces rely on
the operators of chemotaxis, reproduction, mutation, crossover, and selection. It employs the local search
operator (chemotaxis) from BFOA and global search operators (mutation and crossover) from DE. CDEOA
works on the “weak” bacteria to make the algorithm explorative where “weak” bacteria are the individuals in
positions with nutrients-poor medium and “strong” bacteria to make the algorithm exploitative where
“strong” bacteria are the individuals in positions with nutrients-rich medium (Y1ildiz and Altun 2015).

Algorithm (1) Detailed pseudo-code of CDEOA 37: form from 1 to N do // Swim loop

1: Parameters: 38: ifJ(0G.) +1, k)‘) <Jiast then
2: p + dimension of the search space 39: lase = J(0(i.j +1,k)) A®
3 S « total numbe'r ofbacter_ia in the population 40: 0@i,j+1,k) = 6@,j, k) +C@) * m
4: N, « number of chemotaxis steps 41 E, «E +1
5 N; « swimming steps 42: ske
6 Ny « reproduction steps 43: m = N // Break from swim loop
7 C (i) « the run length unit 44: end // If
8 M, « maximum number of tumble steps 45: end // Swim loop
9 M,. « maximum number of run steps 46: end // Tumble-Swim loop
10: f « objective function to be minimized 47: // Exploration loop
11:// Initialize some local variables 48: for i from 1 to S do // Exploration loop
12: E, 01/ bactcr@um's unsucce§sful tumble step 49: /I Take an exploration step for bacterium i
13: E, « 0 // bacterium’s successful run step 50: if E, = M, then
14: 6,5, < random position in the search space 51: 6(i,j + 1,k) « random position
15: fpese < f(Opest) 52: Juase =J(OG,j + 1,k))
16: Myes < maximum number of FEs allowed 53: if Juase <J(i,j, k) then
17: Nygg < 0 // current number of function evaluations 54: J@,j+ 1,k) « Jiast
18: // Define a helper function J that will call the actual objective function S55: end / If
f - This helper function also updates the Ny, Opest, and fpes, variables. 56: E,=0
19: function /(8): 57: end/If
20: v« f(6) 58: end // Exploration loop
21: Nyes < Npeg + 1// update number of FEs 59: // Exploitation loop
22: if v < fyese then 60: for i from 1 to S do // Exploitation loop
23: Bpese — 6 // update global best position 61: if E, = M,. then let bacterium unde_rgo:
24: frest « v // update global best function value 62: DE mutation, crossover, selection
25: return 7 63: end // lt‘ .
26: end // function 64: end // Explonangn loop
27: while Nyos < My do // FEs control loop 65: end // Chemo}axxs loop
28: for k from I to N,. do // Reproduction loop 66: //,chmduc“on
29: for j from 1 to N, do // Chemotaxis loop 67:l;lealth = Z?’:c{l](i'j‘ k)
29: e Xis
30: for i from 1 to S do // Tumble-Swim loop 68: Sort bacteria cost Jeu in ascending order. Let bacteria with the
31t Jiase < J(8(i,j, k)) /1](.) computes the fitness highest Jjeann values die and the remaining bacteria with the best
32: A(i) « random vector within [—1,1] // Tumble values reproduce.
33 6(i,j+1,k) « 6(,jk)+C@) = V‘E"AT:;?W 69: end // Reproduction loop
34: if J(0(i,j + 1,k)) > J(6(i,j, k)) then 70:end // FES control loop
35: Ei«E +1 71:Return 6,
36: /l Swim:

Algorithm 1 Detailed pseudo-code of CDEOA

If the bacterium explores a nutrient-rich medium and carries on running for a predetermined M, number
of consecutive generations, this bacterium will enter exploitation state which is the use of the mutation,
crossover, and selection operators of DE (line 60 in Algorithm 1). If the bacterium’s current cost remains
fixed for a predefined number M, of consecutive generations, then this bacterium will enter exploration state
which is its liquidation (line 48 in Algorithm 1). Yildiz and Altun (2015) reported that the balance between
exploration and exploitation of search space is established due to these two strategies. The pseudocode of
CDEOA is presented in Algorithm 1.

Experimental study

The performance of CDEOA on different mutation and crossover rate pairs were tested using a set of 6
standard benchmark functions. Functions 1 and 2 are unimodal and functions from 3 to 6 are multimodal
functions. Table 1 describes the benchmark functions used in the experiments. CDEOA/rand/1 implies the
algorithm which employs DE/rand/1 mutation strategy (Eg. 3) whereas CDEOA/best/1 implies DE/best/1

(Eq. 4).

Tab. 1 Description of benchmark functions used. D: dimensionality of the functions

No Name Formula Search
space
D
fi | Sphere filx) = Z x? (-2,2)
i=1
fo | Schwefel 2.21 fo(x) = max{|x;|,1 <i < D} (-2,2)
D-1
fz | Rosenbrock fz(x) = Z[lOO(xi+1 —x2)? + (x; — 2)?] (-2,2)
i=1

Comparison of five mutation and crossover rate paired techniques based on DE/rand/1 mutation
strategy

DE/rand/1 (Eqg. 3), one of the most used mutation strategy, is characterized by a slow convergence speed. In
addition, it exhibits much stronger exploration ability as three individuals acting in distinct search space
information out of the current population are randomly chosen. Here, the aforementioned mutation strategy
empowers the exploitation ability. In contrast, it slows down the exploitation ability of an individual (Qin, et
al., 2009).

® Sphere 9.27E-09 9.02E-09 1.77E-06 3.31E-03 9.09E-09
® Schwefel 2.21 1.59E-02 1.03E-02 4.29E+002.53E+019.41E+00
® Rosenbrock 2.57E+012.37E+012.15E+013.68E+012.23E+01

1. Ackley 1.66E+001.66E+001.66E+001.67E+001.66E+00
2. Rastrigin 1.69E+013.22E+001.75E+004.00E+013.30E+00
3. Griewank4.93E-04 8.89E-09 4.19E-08 6.54E-03 8.91E-09

Unimodal functions

In these two unimodal functions in Table 2, [0.5, 0.9] and [0.5, 0.5] exhibit superior performance to the other
[F,CR] pairs. Even though the CRs are different in each pair, they end up with the similar results. We can
infer that F = 0.5 and CR which is within the range of [0.5, 0.9] yield better results in terms of quality of
final solution. [0.1, 0.9] is unable to perform well in two unimodal problems because F which is close to 0.0
has tendency to lead less exploration ability in searching the search space.

2. CONCLUSIONS

CDEOA/best/1 exhibits better performance than CDEOA/rand/1 in sphere. CDEOA/rand/1 outperforms the
CDEOA/best/1 in Shwefel 2.21 showing that the behavior of CDEOA depends on unimodal functions. In
multimodal functions, CDEOA/best/1 is generally better than CDEOA/rand/1 in Rosenbrock with the
exception of [0.1, 0.1] and [0.8, 0.2] pairs, so these exceptions have a great impact in the success of
CDEOA/best/1. Regardless the different [F, CR] pairs, both CDEOA/rand/1 and CDEOA/best/1 possess
identical results in Ackley. CDEOA/rand/1 exhibits in Rastrigin and Griewank better performance than
CDEOA/best/1. We can infer that the results are problem specific. In particular, F € [0.1, 0.5] tends to yield
better performance while CR is equal to 0.5. Generally speaking, there are no common parameter settings for
all the problems. Rather, there is an optimum parameter values for each problem after fine-tuning
experiments. The Python source code of the CDEOA can be found in
(https://sites.google.com/site/yeyildiz12/).

REFERENCES

Dasgupta S, Das S, Abraham A, Biswas A. 2009. Adaptive Computational Chemotaxis in Bacterial
Foraging Optimization: An Analysis. IEEE Transactions on Evolutionary Computation 13:919-941.
doi: 10.1109/TEVC.2009.2021982.

Jinggiao Z, Sanderson AC. 2009. JADE: Adaptive Differential Evolution with Optional External Archive.
IEEE Transactions on Evolutionary Computation 13:945-958. doi: 10.1109/TEVC.2009.2014613
Mishra S. 2005. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation.

Evolutionary Computation, IEEE Transactions on 9, 61-73.

https://sites.google.com/site/yeyildiz12/

